This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constructor theorem for -/\ . (Contributed by Anthony Hart, 1-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | naim1 | |- ( ( ph -> ps ) -> ( ( ps -/\ ch ) -> ( ph -/\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 | |- ( ( ph -> ps ) -> ( -. ps -> -. ph ) ) |
|
| 2 | 1 | orim1d | |- ( ( ph -> ps ) -> ( ( -. ps \/ -. ch ) -> ( -. ph \/ -. ch ) ) ) |
| 3 | pm3.13 | |- ( -. ( ps /\ ch ) -> ( -. ps \/ -. ch ) ) |
|
| 4 | pm3.14 | |- ( ( -. ph \/ -. ch ) -> -. ( ph /\ ch ) ) |
|
| 5 | 3 4 | imim12i | |- ( ( ( -. ps \/ -. ch ) -> ( -. ph \/ -. ch ) ) -> ( -. ( ps /\ ch ) -> -. ( ph /\ ch ) ) ) |
| 6 | df-nan | |- ( ( ps -/\ ch ) <-> -. ( ps /\ ch ) ) |
|
| 7 | df-nan | |- ( ( ph -/\ ch ) <-> -. ( ph /\ ch ) ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( ( ( -. ps \/ -. ch ) -> ( -. ph \/ -. ch ) ) -> ( ( ps -/\ ch ) -> ( ph -/\ ch ) ) ) |
| 9 | 2 8 | syl | |- ( ( ph -> ps ) -> ( ( ps -/\ ch ) -> ( ph -/\ ch ) ) ) |