This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raldifsni | |- ( A. x e. ( A \ { B } ) -. ph <-> A. x e. A ( ph -> x = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
|
| 2 | 1 | imbi1i | |- ( ( x e. ( A \ { B } ) -> -. ph ) <-> ( ( x e. A /\ x =/= B ) -> -. ph ) ) |
| 3 | impexp | |- ( ( ( x e. A /\ x =/= B ) -> -. ph ) <-> ( x e. A -> ( x =/= B -> -. ph ) ) ) |
|
| 4 | df-ne | |- ( x =/= B <-> -. x = B ) |
|
| 5 | 4 | imbi1i | |- ( ( x =/= B -> -. ph ) <-> ( -. x = B -> -. ph ) ) |
| 6 | con34b | |- ( ( ph -> x = B ) <-> ( -. x = B -> -. ph ) ) |
|
| 7 | 5 6 | bitr4i | |- ( ( x =/= B -> -. ph ) <-> ( ph -> x = B ) ) |
| 8 | 7 | imbi2i | |- ( ( x e. A -> ( x =/= B -> -. ph ) ) <-> ( x e. A -> ( ph -> x = B ) ) ) |
| 9 | 2 3 8 | 3bitri | |- ( ( x e. ( A \ { B } ) -> -. ph ) <-> ( x e. A -> ( ph -> x = B ) ) ) |
| 10 | 9 | ralbii2 | |- ( A. x e. ( A \ { B } ) -. ph <-> A. x e. A ( ph -> x = B ) ) |