This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raldifsni | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → ¬ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → ¬ 𝜑 ) ) |
| 3 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → ¬ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ) ) | |
| 4 | df-ne | ⊢ ( 𝑥 ≠ 𝐵 ↔ ¬ 𝑥 = 𝐵 ) | |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ↔ ( ¬ 𝑥 = 𝐵 → ¬ 𝜑 ) ) |
| 6 | con34b | ⊢ ( ( 𝜑 → 𝑥 = 𝐵 ) ↔ ( ¬ 𝑥 = 𝐵 → ¬ 𝜑 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ↔ ( 𝜑 → 𝑥 = 𝐵 ) ) |
| 8 | 7 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝐵 ) ) ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → ¬ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝐵 ) ) ) |
| 10 | 9 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ) |