This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
raldifsnb
Metamath Proof Explorer
Description: Restricted universal quantification on a class difference with a singleton
in terms of an implication. (Contributed by Alexander van der Vekens , 26-Jan-2018)
Ref
Expression
Assertion
raldifsnb
⊢ ∀ x ∈ A x ≠ Y → φ ↔ ∀ x ∈ A ∖ Y φ
Proof
Step
Hyp
Ref
Expression
1
velsn
⊢ x ∈ Y ↔ x = Y
2
nnel
⊢ ¬ x ∉ Y ↔ x ∈ Y
3
nne
⊢ ¬ x ≠ Y ↔ x = Y
4
1 2 3
3bitr4ri
⊢ ¬ x ≠ Y ↔ ¬ x ∉ Y
5
4
con4bii
⊢ x ≠ Y ↔ x ∉ Y
6
5
imbi1i
⊢ x ≠ Y → φ ↔ x ∉ Y → φ
7
6
ralbii
⊢ ∀ x ∈ A x ≠ Y → φ ↔ ∀ x ∈ A x ∉ Y → φ
8
raldifb
⊢ ∀ x ∈ A x ∉ Y → φ ↔ ∀ x ∈ A ∖ Y φ
9
7 8
bitri
⊢ ∀ x ∈ A x ≠ Y → φ ↔ ∀ x ∈ A ∖ Y φ