This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raldifb | |- ( A. x e. A ( x e/ B -> ph ) <-> A. x e. ( A \ B ) ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp | |- ( ( ( x e. A /\ x e/ B ) -> ph ) <-> ( x e. A -> ( x e/ B -> ph ) ) ) |
|
| 2 | df-nel | |- ( x e/ B <-> -. x e. B ) |
|
| 3 | 2 | anbi2i | |- ( ( x e. A /\ x e/ B ) <-> ( x e. A /\ -. x e. B ) ) |
| 4 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 5 | 3 4 | bitr4i | |- ( ( x e. A /\ x e/ B ) <-> x e. ( A \ B ) ) |
| 6 | 5 | imbi1i | |- ( ( ( x e. A /\ x e/ B ) -> ph ) <-> ( x e. ( A \ B ) -> ph ) ) |
| 7 | 1 6 | bitr3i | |- ( ( x e. A -> ( x e/ B -> ph ) ) <-> ( x e. ( A \ B ) -> ph ) ) |
| 8 | 7 | ralbii2 | |- ( A. x e. A ( x e/ B -> ph ) <-> A. x e. ( A \ B ) ph ) |