This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabsnif.f | ||
| Assertion | rabsnif |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnif.f | ||
| 2 | rabsnifsb | ||
| 3 | 1 | sbcieg | |
| 4 | 3 | ifbid | |
| 5 | 2 4 | eqtrid | |
| 6 | rab0 | ||
| 7 | ifid | ||
| 8 | 6 7 | eqtr4i | |
| 9 | snprc | ||
| 10 | 9 | biimpi | |
| 11 | 10 | rabeqdv | |
| 12 | 10 | ifeq1d | |
| 13 | 8 11 12 | 3eqtr4a | |
| 14 | 5 13 | pm2.61i |