This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssnf1o.y | |- Y = ( R ^s { I } ) |
|
| pwssnf1o.b | |- B = ( Base ` R ) |
||
| pwssnf1o.f | |- F = ( x e. B |-> ( { I } X. { x } ) ) |
||
| pwssnf1o.c | |- C = ( Base ` Y ) |
||
| Assertion | pwssnf1o | |- ( ( R e. V /\ I e. W ) -> F : B -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssnf1o.y | |- Y = ( R ^s { I } ) |
|
| 2 | pwssnf1o.b | |- B = ( Base ` R ) |
|
| 3 | pwssnf1o.f | |- F = ( x e. B |-> ( { I } X. { x } ) ) |
|
| 4 | pwssnf1o.c | |- C = ( Base ` Y ) |
|
| 5 | 2 | fvexi | |- B e. _V |
| 6 | simpr | |- ( ( R e. V /\ I e. W ) -> I e. W ) |
|
| 7 | 3 | mapsnf1o | |- ( ( B e. _V /\ I e. W ) -> F : B -1-1-onto-> ( B ^m { I } ) ) |
| 8 | 5 6 7 | sylancr | |- ( ( R e. V /\ I e. W ) -> F : B -1-1-onto-> ( B ^m { I } ) ) |
| 9 | snex | |- { I } e. _V |
|
| 10 | 1 2 | pwsbas | |- ( ( R e. V /\ { I } e. _V ) -> ( B ^m { I } ) = ( Base ` Y ) ) |
| 11 | 9 10 | mpan2 | |- ( R e. V -> ( B ^m { I } ) = ( Base ` Y ) ) |
| 12 | 11 | adantr | |- ( ( R e. V /\ I e. W ) -> ( B ^m { I } ) = ( Base ` Y ) ) |
| 13 | 4 12 | eqtr4id | |- ( ( R e. V /\ I e. W ) -> C = ( B ^m { I } ) ) |
| 14 | 13 | f1oeq3d | |- ( ( R e. V /\ I e. W ) -> ( F : B -1-1-onto-> C <-> F : B -1-1-onto-> ( B ^m { I } ) ) ) |
| 15 | 8 14 | mpbird | |- ( ( R e. V /\ I e. W ) -> F : B -1-1-onto-> C ) |