This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwpr | |- ~P { A , B } = ( { (/) , { A } } u. { { B } , { A , B } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspr | |- ( x C_ { A , B } <-> ( ( x = (/) \/ x = { A } ) \/ ( x = { B } \/ x = { A , B } ) ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | elpr | |- ( x e. { (/) , { A } } <-> ( x = (/) \/ x = { A } ) ) |
| 4 | 2 | elpr | |- ( x e. { { B } , { A , B } } <-> ( x = { B } \/ x = { A , B } ) ) |
| 5 | 3 4 | orbi12i | |- ( ( x e. { (/) , { A } } \/ x e. { { B } , { A , B } } ) <-> ( ( x = (/) \/ x = { A } ) \/ ( x = { B } \/ x = { A , B } ) ) ) |
| 6 | 1 5 | bitr4i | |- ( x C_ { A , B } <-> ( x e. { (/) , { A } } \/ x e. { { B } , { A , B } } ) ) |
| 7 | velpw | |- ( x e. ~P { A , B } <-> x C_ { A , B } ) |
|
| 8 | elun | |- ( x e. ( { (/) , { A } } u. { { B } , { A , B } } ) <-> ( x e. { (/) , { A } } \/ x e. { { B } , { A , B } } ) ) |
|
| 9 | 6 7 8 | 3bitr4i | |- ( x e. ~P { A , B } <-> x e. ( { (/) , { A } } u. { { B } , { A , B } } ) ) |
| 10 | 9 | eqriv | |- ~P { A , B } = ( { (/) , { A } } u. { { B } , { A , B } } ) |