This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmetxrge0 | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> ( 0 [,] +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 2 | 1 | ffnd | |- ( D e. ( PsMet ` X ) -> D Fn ( X X. X ) ) |
| 3 | 1 | ffvelcdmda | |- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. RR* ) |
| 4 | elxp6 | |- ( a e. ( X X. X ) <-> ( a = <. ( 1st ` a ) , ( 2nd ` a ) >. /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) ) |
|
| 5 | 4 | simprbi | |- ( a e. ( X X. X ) -> ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) |
| 6 | psmetge0 | |- ( ( D e. ( PsMet ` X ) /\ ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
|
| 7 | 6 | 3expb | |- ( ( D e. ( PsMet ` X ) /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
| 8 | 5 7 | sylan2 | |- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
| 9 | 1st2nd2 | |- ( a e. ( X X. X ) -> a = <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
|
| 10 | 9 | fveq2d | |- ( a e. ( X X. X ) -> ( D ` a ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) ) |
| 11 | df-ov | |- ( ( 1st ` a ) D ( 2nd ` a ) ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
|
| 12 | 10 11 | eqtr4di | |- ( a e. ( X X. X ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
| 13 | 12 | adantl | |- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
| 14 | 8 13 | breqtrrd | |- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( D ` a ) ) |
| 15 | elxrge0 | |- ( ( D ` a ) e. ( 0 [,] +oo ) <-> ( ( D ` a ) e. RR* /\ 0 <_ ( D ` a ) ) ) |
|
| 16 | 3 14 15 | sylanbrc | |- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. ( 0 [,] +oo ) ) |
| 17 | 16 | ralrimiva | |- ( D e. ( PsMet ` X ) -> A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) |
| 18 | fnfvrnss | |- ( ( D Fn ( X X. X ) /\ A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) -> ran D C_ ( 0 [,] +oo ) ) |
|
| 19 | 2 17 18 | syl2anc | |- ( D e. ( PsMet ` X ) -> ran D C_ ( 0 [,] +oo ) ) |
| 20 | df-f | |- ( D : ( X X. X ) --> ( 0 [,] +oo ) <-> ( D Fn ( X X. X ) /\ ran D C_ ( 0 [,] +oo ) ) ) |
|
| 21 | 2 19 20 | sylanbrc | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> ( 0 [,] +oo ) ) |