This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product of a singleton is the term. A version of prodsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodsnf.1 | |- F/_ k B |
|
| prodsnf.2 | |- ( k = M -> A = B ) |
||
| Assertion | prodsnf | |- ( ( M e. V /\ B e. CC ) -> prod_ k e. { M } A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodsnf.1 | |- F/_ k B |
|
| 2 | prodsnf.2 | |- ( k = M -> A = B ) |
|
| 3 | nfcv | |- F/_ m A |
|
| 4 | nfcsb1v | |- F/_ k [_ m / k ]_ A |
|
| 5 | csbeq1a | |- ( k = m -> A = [_ m / k ]_ A ) |
|
| 6 | 3 4 5 | cbvprodi | |- prod_ k e. { M } A = prod_ m e. { M } [_ m / k ]_ A |
| 7 | csbeq1 | |- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
|
| 8 | 1nn | |- 1 e. NN |
|
| 9 | 8 | a1i | |- ( ( M e. V /\ B e. CC ) -> 1 e. NN ) |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | f1osng | |- ( ( 1 e. ZZ /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
|
| 12 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 13 | 10 12 | ax-mp | |- ( 1 ... 1 ) = { 1 } |
| 14 | f1oeq2 | |- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
|
| 15 | 13 14 | ax-mp | |- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 16 | 11 15 | sylibr | |- ( ( 1 e. ZZ /\ M e. V ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 17 | 10 16 | mpan | |- ( M e. V -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 18 | 17 | adantr | |- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 19 | velsn | |- ( m e. { M } <-> m = M ) |
|
| 20 | csbeq1 | |- ( m = M -> [_ m / k ]_ A = [_ M / k ]_ A ) |
|
| 21 | 1 | a1i | |- ( M e. V -> F/_ k B ) |
| 22 | 21 2 | csbiegf | |- ( M e. V -> [_ M / k ]_ A = B ) |
| 23 | 22 | adantr | |- ( ( M e. V /\ B e. CC ) -> [_ M / k ]_ A = B ) |
| 24 | 20 23 | sylan9eqr | |- ( ( ( M e. V /\ B e. CC ) /\ m = M ) -> [_ m / k ]_ A = B ) |
| 25 | 19 24 | sylan2b | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A = B ) |
| 26 | simplr | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> B e. CC ) |
|
| 27 | 25 26 | eqeltrd | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 28 | 13 | eleq2i | |- ( n e. ( 1 ... 1 ) <-> n e. { 1 } ) |
| 29 | velsn | |- ( n e. { 1 } <-> n = 1 ) |
|
| 30 | 28 29 | bitri | |- ( n e. ( 1 ... 1 ) <-> n = 1 ) |
| 31 | fvsng | |- ( ( 1 e. ZZ /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
|
| 32 | 10 31 | mpan | |- ( M e. V -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 33 | 32 | adantr | |- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 34 | 33 | csbeq1d | |- ( ( M e. V /\ B e. CC ) -> [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A = [_ M / k ]_ A ) |
| 35 | simpr | |- ( ( M e. V /\ B e. CC ) -> B e. CC ) |
|
| 36 | fvsng | |- ( ( 1 e. ZZ /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
|
| 37 | 10 35 36 | sylancr | |- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 38 | 23 34 37 | 3eqtr4rd | |- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) |
| 39 | fveq2 | |- ( n = 1 -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
|
| 40 | fveq2 | |- ( n = 1 -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
|
| 41 | 40 | csbeq1d | |- ( n = 1 -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) |
| 42 | 39 41 | eqeq12d | |- ( n = 1 -> ( ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A <-> ( { <. 1 , B >. } ` 1 ) = [_ ( { <. 1 , M >. } ` 1 ) / k ]_ A ) ) |
| 43 | 38 42 | syl5ibrcom | |- ( ( M e. V /\ B e. CC ) -> ( n = 1 -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) ) |
| 44 | 43 | imp | |- ( ( ( M e. V /\ B e. CC ) /\ n = 1 ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 45 | 30 44 | sylan2b | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 46 | 7 9 18 27 45 | fprod | |- ( ( M e. V /\ B e. CC ) -> prod_ m e. { M } [_ m / k ]_ A = ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) ) |
| 47 | 6 46 | eqtrid | |- ( ( M e. V /\ B e. CC ) -> prod_ k e. { M } A = ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) ) |
| 48 | 10 37 | seq1i | |- ( ( M e. V /\ B e. CC ) -> ( seq 1 ( x. , { <. 1 , B >. } ) ` 1 ) = B ) |
| 49 | 47 48 | eqtrd | |- ( ( M e. V /\ B e. CC ) -> prod_ k e. { M } A = B ) |