This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codoamin of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtf | |- theta : RR --> RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cht | |- theta = ( x e. RR |-> sum_ p e. ( ( 0 [,] x ) i^i Prime ) ( log ` p ) ) |
|
| 2 | ppifi | |- ( x e. RR -> ( ( 0 [,] x ) i^i Prime ) e. Fin ) |
|
| 3 | simpr | |- ( ( x e. RR /\ p e. ( ( 0 [,] x ) i^i Prime ) ) -> p e. ( ( 0 [,] x ) i^i Prime ) ) |
|
| 4 | 3 | elin2d | |- ( ( x e. RR /\ p e. ( ( 0 [,] x ) i^i Prime ) ) -> p e. Prime ) |
| 5 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 6 | 4 5 | syl | |- ( ( x e. RR /\ p e. ( ( 0 [,] x ) i^i Prime ) ) -> p e. NN ) |
| 7 | 6 | nnrpd | |- ( ( x e. RR /\ p e. ( ( 0 [,] x ) i^i Prime ) ) -> p e. RR+ ) |
| 8 | 7 | relogcld | |- ( ( x e. RR /\ p e. ( ( 0 [,] x ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 9 | 2 8 | fsumrecl | |- ( x e. RR -> sum_ p e. ( ( 0 [,] x ) i^i Prime ) ( log ` p ) e. RR ) |
| 10 | 1 9 | fmpti | |- theta : RR --> RR |