This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predprc | |- ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 2 | snprc | |- ( -. X e. _V <-> { X } = (/) ) |
|
| 3 | 2 | biimpi | |- ( -. X e. _V -> { X } = (/) ) |
| 4 | 3 | imaeq2d | |- ( -. X e. _V -> ( `' R " { X } ) = ( `' R " (/) ) ) |
| 5 | ima0 | |- ( `' R " (/) ) = (/) |
|
| 6 | 4 5 | eqtrdi | |- ( -. X e. _V -> ( `' R " { X } ) = (/) ) |
| 7 | 6 | ineq2d | |- ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i (/) ) ) |
| 8 | in0 | |- ( A i^i (/) ) = (/) |
|
| 9 | 7 8 | eqtrdi | |- ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = (/) ) |
| 10 | 1 9 | eqtrid | |- ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |