This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.54 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.54 | |- ( ( ( ph /\ ps ) <-> ph ) \/ ( ( ph /\ ps ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba | |- ( ps -> ( ph <-> ( ph /\ ps ) ) ) |
|
| 2 | 1 | bicomd | |- ( ps -> ( ( ph /\ ps ) <-> ph ) ) |
| 3 | 2 | adantl | |- ( ( ph /\ ps ) -> ( ( ph /\ ps ) <-> ph ) ) |
| 4 | 3 2 | pm5.21ni | |- ( -. ( ( ph /\ ps ) <-> ph ) -> ( ( ph /\ ps ) <-> ps ) ) |
| 5 | 4 | orri | |- ( ( ( ph /\ ps ) <-> ph ) \/ ( ( ph /\ ps ) <-> ps ) ) |