This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.62 of WhiteheadRussell p. 125. (Contributed by Roy F. Longton, 21-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.62 | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ph \/ -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid | |- ( ps \/ -. ps ) |
|
| 2 | ordir | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ( ph \/ -. ps ) /\ ( ps \/ -. ps ) ) ) |
|
| 3 | 1 2 | mpbiran2 | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ph \/ -. ps ) ) |