This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.54 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.54 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba | ⊢ ( 𝜓 → ( 𝜑 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ) |
| 4 | 3 2 | pm5.21ni | ⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 5 | 4 | orri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |