This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.15 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 18-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.15 | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2b | |- ( ( ( ps /\ ch ) -> -. ph ) <-> ( ph -> -. ( ps /\ ch ) ) ) |
|
| 2 | nan | |- ( ( ph -> -. ( ps /\ ch ) ) <-> ( ( ph /\ ps ) -> -. ch ) ) |
|
| 3 | 1 2 | bitr2i | |- ( ( ( ph /\ ps ) -> -. ch ) <-> ( ( ps /\ ch ) -> -. ph ) ) |