This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm5.36

Description: Theorem *5.36 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.36
|- ( ( ph /\ ( ph <-> ps ) ) <-> ( ps /\ ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph <-> ps ) -> ( ph <-> ps ) )
2 1 pm5.32ri
 |-  ( ( ph /\ ( ph <-> ps ) ) <-> ( ps /\ ( ph <-> ps ) ) )