This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.15 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 18-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.15 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) → ¬ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2b | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → ¬ 𝜑 ) ↔ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 2 | nan | ⊢ ( ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) ) | |
| 3 | 1 2 | bitr2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) → ¬ 𝜑 ) ) |