This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr (which has 4 members), we chain strleun once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | phlfn.h | |- H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
| Assertion | phlstr | |- H Struct <. 1 , 8 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlfn.h | |- H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
| 2 | df-pr | |- { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } = ( { <. ( .s ` ndx ) , .x. >. } u. { <. ( .i ` ndx ) , ., >. } ) |
|
| 3 | 2 | uneq2i | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. ( { <. ( .s ` ndx ) , .x. >. } u. { <. ( .i ` ndx ) , ., >. } ) ) |
| 4 | unass | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) u. { <. ( .i ` ndx ) , ., >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. ( { <. ( .s ` ndx ) , .x. >. } u. { <. ( .i ` ndx ) , ., >. } ) ) |
|
| 5 | 3 1 4 | 3eqtr4i | |- H = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) u. { <. ( .i ` ndx ) , ., >. } ) |
| 6 | eqid | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) |
|
| 7 | 6 | lmodstr | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) Struct <. 1 , 6 >. |
| 8 | 8nn | |- 8 e. NN |
|
| 9 | ipndx | |- ( .i ` ndx ) = 8 |
|
| 10 | 8 9 | strle1 | |- { <. ( .i ` ndx ) , ., >. } Struct <. 8 , 8 >. |
| 11 | 6lt8 | |- 6 < 8 |
|
| 12 | 7 10 11 | strleun | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. } ) u. { <. ( .i ` ndx ) , ., >. } ) Struct <. 1 , 8 >. |
| 13 | 5 12 | eqbrtri | |- H Struct <. 1 , 8 >. |