This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of TakeutiZaring p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes . (Contributed by NM, 18-Feb-2004) Avoid ax-10 , ax-12 . (Revised by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano5 | |- ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> _om C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn | |- ( z e. ( _om \ A ) -> -. z e. A ) |
|
| 2 | 1 | adantl | |- ( ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) /\ z e. ( _om \ A ) ) -> -. z e. A ) |
| 3 | eldifi | |- ( z e. ( _om \ A ) -> z e. _om ) |
|
| 4 | elndif | |- ( (/) e. A -> -. (/) e. ( _om \ A ) ) |
|
| 5 | eleq1 | |- ( z = (/) -> ( z e. ( _om \ A ) <-> (/) e. ( _om \ A ) ) ) |
|
| 6 | 5 | biimpcd | |- ( z e. ( _om \ A ) -> ( z = (/) -> (/) e. ( _om \ A ) ) ) |
| 7 | 6 | necon3bd | |- ( z e. ( _om \ A ) -> ( -. (/) e. ( _om \ A ) -> z =/= (/) ) ) |
| 8 | 4 7 | mpan9 | |- ( ( (/) e. A /\ z e. ( _om \ A ) ) -> z =/= (/) ) |
| 9 | nnsuc | |- ( ( z e. _om /\ z =/= (/) ) -> E. y e. _om z = suc y ) |
|
| 10 | 3 8 9 | syl2an2 | |- ( ( (/) e. A /\ z e. ( _om \ A ) ) -> E. y e. _om z = suc y ) |
| 11 | 10 | ad4ant13 | |- ( ( ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) /\ z e. ( _om \ A ) ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> E. y e. _om z = suc y ) |
| 12 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 13 | suceq | |- ( x = y -> suc x = suc y ) |
|
| 14 | 13 | eleq1d | |- ( x = y -> ( suc x e. A <-> suc y e. A ) ) |
| 15 | 12 14 | imbi12d | |- ( x = y -> ( ( x e. A -> suc x e. A ) <-> ( y e. A -> suc y e. A ) ) ) |
| 16 | 15 | rspccv | |- ( A. x e. _om ( x e. A -> suc x e. A ) -> ( y e. _om -> ( y e. A -> suc y e. A ) ) ) |
| 17 | vex | |- y e. _V |
|
| 18 | 17 | sucid | |- y e. suc y |
| 19 | eleq2 | |- ( z = suc y -> ( y e. z <-> y e. suc y ) ) |
|
| 20 | 18 19 | mpbiri | |- ( z = suc y -> y e. z ) |
| 21 | eleq1 | |- ( z = suc y -> ( z e. _om <-> suc y e. _om ) ) |
|
| 22 | peano2b | |- ( y e. _om <-> suc y e. _om ) |
|
| 23 | 21 22 | bitr4di | |- ( z = suc y -> ( z e. _om <-> y e. _om ) ) |
| 24 | minel | |- ( ( y e. z /\ ( ( _om \ A ) i^i z ) = (/) ) -> -. y e. ( _om \ A ) ) |
|
| 25 | neldif | |- ( ( y e. _om /\ -. y e. ( _om \ A ) ) -> y e. A ) |
|
| 26 | 24 25 | sylan2 | |- ( ( y e. _om /\ ( y e. z /\ ( ( _om \ A ) i^i z ) = (/) ) ) -> y e. A ) |
| 27 | 26 | exp32 | |- ( y e. _om -> ( y e. z -> ( ( ( _om \ A ) i^i z ) = (/) -> y e. A ) ) ) |
| 28 | 23 27 | biimtrdi | |- ( z = suc y -> ( z e. _om -> ( y e. z -> ( ( ( _om \ A ) i^i z ) = (/) -> y e. A ) ) ) ) |
| 29 | 20 28 | mpid | |- ( z = suc y -> ( z e. _om -> ( ( ( _om \ A ) i^i z ) = (/) -> y e. A ) ) ) |
| 30 | 3 29 | syl5 | |- ( z = suc y -> ( z e. ( _om \ A ) -> ( ( ( _om \ A ) i^i z ) = (/) -> y e. A ) ) ) |
| 31 | 30 | impd | |- ( z = suc y -> ( ( z e. ( _om \ A ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> y e. A ) ) |
| 32 | eleq1a | |- ( suc y e. A -> ( z = suc y -> z e. A ) ) |
|
| 33 | 32 | com12 | |- ( z = suc y -> ( suc y e. A -> z e. A ) ) |
| 34 | 31 33 | imim12d | |- ( z = suc y -> ( ( y e. A -> suc y e. A ) -> ( ( z e. ( _om \ A ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> z e. A ) ) ) |
| 35 | 34 | com13 | |- ( ( z e. ( _om \ A ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> ( ( y e. A -> suc y e. A ) -> ( z = suc y -> z e. A ) ) ) |
| 36 | 16 35 | sylan9 | |- ( ( A. x e. _om ( x e. A -> suc x e. A ) /\ ( z e. ( _om \ A ) /\ ( ( _om \ A ) i^i z ) = (/) ) ) -> ( y e. _om -> ( z = suc y -> z e. A ) ) ) |
| 37 | 36 | rexlimdv | |- ( ( A. x e. _om ( x e. A -> suc x e. A ) /\ ( z e. ( _om \ A ) /\ ( ( _om \ A ) i^i z ) = (/) ) ) -> ( E. y e. _om z = suc y -> z e. A ) ) |
| 38 | 37 | exp32 | |- ( A. x e. _om ( x e. A -> suc x e. A ) -> ( z e. ( _om \ A ) -> ( ( ( _om \ A ) i^i z ) = (/) -> ( E. y e. _om z = suc y -> z e. A ) ) ) ) |
| 39 | 38 | a1i | |- ( (/) e. A -> ( A. x e. _om ( x e. A -> suc x e. A ) -> ( z e. ( _om \ A ) -> ( ( ( _om \ A ) i^i z ) = (/) -> ( E. y e. _om z = suc y -> z e. A ) ) ) ) ) |
| 40 | 39 | imp41 | |- ( ( ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) /\ z e. ( _om \ A ) ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> ( E. y e. _om z = suc y -> z e. A ) ) |
| 41 | 11 40 | mpd | |- ( ( ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) /\ z e. ( _om \ A ) ) /\ ( ( _om \ A ) i^i z ) = (/) ) -> z e. A ) |
| 42 | 2 41 | mtand | |- ( ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) /\ z e. ( _om \ A ) ) -> -. ( ( _om \ A ) i^i z ) = (/) ) |
| 43 | 42 | nrexdv | |- ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> -. E. z e. ( _om \ A ) ( ( _om \ A ) i^i z ) = (/) ) |
| 44 | ordom | |- Ord _om |
|
| 45 | difss | |- ( _om \ A ) C_ _om |
|
| 46 | tz7.5 | |- ( ( Ord _om /\ ( _om \ A ) C_ _om /\ ( _om \ A ) =/= (/) ) -> E. z e. ( _om \ A ) ( ( _om \ A ) i^i z ) = (/) ) |
|
| 47 | 44 45 46 | mp3an12 | |- ( ( _om \ A ) =/= (/) -> E. z e. ( _om \ A ) ( ( _om \ A ) i^i z ) = (/) ) |
| 48 | 47 | necon1bi | |- ( -. E. z e. ( _om \ A ) ( ( _om \ A ) i^i z ) = (/) -> ( _om \ A ) = (/) ) |
| 49 | 43 48 | syl | |- ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> ( _om \ A ) = (/) ) |
| 50 | ssdif0 | |- ( _om C_ A <-> ( _om \ A ) = (/) ) |
|
| 51 | 49 50 | sylibr | |- ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> _om C_ A ) |