This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of ovmpt4g . (This is the operation analogue of fvmpt2d .) (Contributed by Zhi Wang, 9-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt4d.1 | |- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
|
| ovmpt4d.2 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. V ) |
||
| Assertion | ovmpt4d | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt4d.1 | |- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
|
| 2 | ovmpt4d.2 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. V ) |
|
| 3 | 1 | oveqdr | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = ( x ( x e. A , y e. B |-> C ) y ) ) |
| 4 | simprl | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> x e. A ) |
|
| 5 | simprr | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> y e. B ) |
|
| 6 | eqid | |- ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> C ) |
|
| 7 | 6 | ovmpt4g | |- ( ( x e. A /\ y e. B /\ C e. V ) -> ( x ( x e. A , y e. B |-> C ) y ) = C ) |
| 8 | 4 5 2 7 | syl3anc | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x ( x e. A , y e. B |-> C ) y ) = C ) |
| 9 | 3 8 | eqtrd | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( x F y ) = C ) |