This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovid.1 | |- ( ( x e. R /\ y e. S ) -> E! z ph ) |
|
| ovid.2 | |- F = { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } |
||
| Assertion | ovid | |- ( ( x e. R /\ y e. S ) -> ( ( x F y ) = z <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovid.1 | |- ( ( x e. R /\ y e. S ) -> E! z ph ) |
|
| 2 | ovid.2 | |- F = { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 3 | eqeq1i | |- ( ( x F y ) = z <-> ( F ` <. x , y >. ) = z ) |
| 5 | 1 | fnoprab | |- { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } Fn { <. x , y >. | ( x e. R /\ y e. S ) } |
| 6 | 2 | fneq1i | |- ( F Fn { <. x , y >. | ( x e. R /\ y e. S ) } <-> { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } Fn { <. x , y >. | ( x e. R /\ y e. S ) } ) |
| 7 | 5 6 | mpbir | |- F Fn { <. x , y >. | ( x e. R /\ y e. S ) } |
| 8 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ( x e. R /\ y e. S ) } <-> ( x e. R /\ y e. S ) ) |
|
| 9 | 8 | biimpri | |- ( ( x e. R /\ y e. S ) -> <. x , y >. e. { <. x , y >. | ( x e. R /\ y e. S ) } ) |
| 10 | fnopfvb | |- ( ( F Fn { <. x , y >. | ( x e. R /\ y e. S ) } /\ <. x , y >. e. { <. x , y >. | ( x e. R /\ y e. S ) } ) -> ( ( F ` <. x , y >. ) = z <-> <. <. x , y >. , z >. e. F ) ) |
|
| 11 | 7 9 10 | sylancr | |- ( ( x e. R /\ y e. S ) -> ( ( F ` <. x , y >. ) = z <-> <. <. x , y >. , z >. e. F ) ) |
| 12 | 2 | eleq2i | |- ( <. <. x , y >. , z >. e. F <-> <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } ) |
| 13 | oprabidw | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) } <-> ( ( x e. R /\ y e. S ) /\ ph ) ) |
|
| 14 | 12 13 | bitri | |- ( <. <. x , y >. , z >. e. F <-> ( ( x e. R /\ y e. S ) /\ ph ) ) |
| 15 | 14 | baib | |- ( ( x e. R /\ y e. S ) -> ( <. <. x , y >. , z >. e. F <-> ph ) ) |
| 16 | 11 15 | bitrd | |- ( ( x e. R /\ y e. S ) -> ( ( F ` <. x , y >. ) = z <-> ph ) ) |
| 17 | 4 16 | bitrid | |- ( ( x e. R /\ y e. S ) -> ( ( x F y ) = z <-> ph ) ) |