This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Compare ovidi . The condition ( x e. R /\ y e. S ) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovidig.1 | |- E* z ph |
|
| ovidig.2 | |- F = { <. <. x , y >. , z >. | ph } |
||
| Assertion | ovidig | |- ( ph -> ( x F y ) = z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovidig.1 | |- E* z ph |
|
| 2 | ovidig.2 | |- F = { <. <. x , y >. , z >. | ph } |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 1 | funoprab | |- Fun { <. <. x , y >. , z >. | ph } |
| 5 | 2 | funeqi | |- ( Fun F <-> Fun { <. <. x , y >. , z >. | ph } ) |
| 6 | 4 5 | mpbir | |- Fun F |
| 7 | oprabidw | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |
|
| 8 | 7 | biimpri | |- ( ph -> <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } ) |
| 9 | 8 2 | eleqtrrdi | |- ( ph -> <. <. x , y >. , z >. e. F ) |
| 10 | funopfv | |- ( Fun F -> ( <. <. x , y >. , z >. e. F -> ( F ` <. x , y >. ) = z ) ) |
|
| 11 | 6 9 10 | mpsyl | |- ( ph -> ( F ` <. x , y >. ) = z ) |
| 12 | 3 11 | eqtrid | |- ( ph -> ( x F y ) = z ) |