This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | otthne.1 | |- A e. _V |
|
| otthne.2 | |- B e. _V |
||
| otthne.3 | |- C e. _V |
||
| Assertion | otthne | |- ( <. A , B , C >. =/= <. D , E , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otthne.1 | |- A e. _V |
|
| 2 | otthne.2 | |- B e. _V |
|
| 3 | otthne.3 | |- C e. _V |
|
| 4 | 1 2 3 | otth | |- ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) |
| 5 | 4 | notbii | |- ( -. <. A , B , C >. = <. D , E , F >. <-> -. ( A = D /\ B = E /\ C = F ) ) |
| 6 | 3ianor | |- ( -. ( A = D /\ B = E /\ C = F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
|
| 7 | 5 6 | bitri | |- ( -. <. A , B , C >. = <. D , E , F >. <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
| 8 | df-ne | |- ( <. A , B , C >. =/= <. D , E , F >. <-> -. <. A , B , C >. = <. D , E , F >. ) |
|
| 9 | df-ne | |- ( A =/= D <-> -. A = D ) |
|
| 10 | df-ne | |- ( B =/= E <-> -. B = E ) |
|
| 11 | df-ne | |- ( C =/= F <-> -. C = F ) |
|
| 12 | 9 10 11 | 3orbi123i | |- ( ( A =/= D \/ B =/= E \/ C =/= F ) <-> ( -. A = D \/ -. B = E \/ -. C = F ) ) |
| 13 | 7 8 12 | 3bitr4i | |- ( <. A , B , C >. =/= <. D , E , F >. <-> ( A =/= D \/ B =/= E \/ C =/= F ) ) |