This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otthg | |- ( ( A e. U /\ B e. V /\ C e. W ) -> ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot | |- <. A , B , C >. = <. <. A , B >. , C >. |
|
| 2 | df-ot | |- <. D , E , F >. = <. <. D , E >. , F >. |
|
| 3 | 1 2 | eqeq12i | |- ( <. A , B , C >. = <. D , E , F >. <-> <. <. A , B >. , C >. = <. <. D , E >. , F >. ) |
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | opthg | |- ( ( <. A , B >. e. _V /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( <. A , B >. = <. D , E >. /\ C = F ) ) ) |
|
| 6 | 4 5 | mpan | |- ( C e. W -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( <. A , B >. = <. D , E >. /\ C = F ) ) ) |
| 7 | opthg | |- ( ( A e. U /\ B e. V ) -> ( <. A , B >. = <. D , E >. <-> ( A = D /\ B = E ) ) ) |
|
| 8 | 7 | anbi1d | |- ( ( A e. U /\ B e. V ) -> ( ( <. A , B >. = <. D , E >. /\ C = F ) <-> ( ( A = D /\ B = E ) /\ C = F ) ) ) |
| 9 | df-3an | |- ( ( A = D /\ B = E /\ C = F ) <-> ( ( A = D /\ B = E ) /\ C = F ) ) |
|
| 10 | 8 9 | bitr4di | |- ( ( A e. U /\ B e. V ) -> ( ( <. A , B >. = <. D , E >. /\ C = F ) <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 11 | 6 10 | sylan9bbr | |- ( ( ( A e. U /\ B e. V ) /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 12 | 11 | 3impa | |- ( ( A e. U /\ B e. V /\ C e. W ) -> ( <. <. A , B >. , C >. = <. <. D , E >. , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |
| 13 | 3 12 | bitrid | |- ( ( A e. U /\ B e. V /\ C e. W ) -> ( <. A , B , C >. = <. D , E , F >. <-> ( A = D /\ B = E /\ C = F ) ) ) |