This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oprabss | |- { <. <. x , y >. , z >. | ph } C_ ( ( _V X. _V ) X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reloprab | |- Rel { <. <. x , y >. , z >. | ph } |
|
| 2 | relssdmrn | |- ( Rel { <. <. x , y >. , z >. | ph } -> { <. <. x , y >. , z >. | ph } C_ ( dom { <. <. x , y >. , z >. | ph } X. ran { <. <. x , y >. , z >. | ph } ) ) |
|
| 3 | 1 2 | ax-mp | |- { <. <. x , y >. , z >. | ph } C_ ( dom { <. <. x , y >. , z >. | ph } X. ran { <. <. x , y >. , z >. | ph } ) |
| 4 | reldmoprab | |- Rel dom { <. <. x , y >. , z >. | ph } |
|
| 5 | df-rel | |- ( Rel dom { <. <. x , y >. , z >. | ph } <-> dom { <. <. x , y >. , z >. | ph } C_ ( _V X. _V ) ) |
|
| 6 | 4 5 | mpbi | |- dom { <. <. x , y >. , z >. | ph } C_ ( _V X. _V ) |
| 7 | ssv | |- ran { <. <. x , y >. , z >. | ph } C_ _V |
|
| 8 | xpss12 | |- ( ( dom { <. <. x , y >. , z >. | ph } C_ ( _V X. _V ) /\ ran { <. <. x , y >. , z >. | ph } C_ _V ) -> ( dom { <. <. x , y >. , z >. | ph } X. ran { <. <. x , y >. , z >. | ph } ) C_ ( ( _V X. _V ) X. _V ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( dom { <. <. x , y >. , z >. | ph } X. ran { <. <. x , y >. , z >. | ph } ) C_ ( ( _V X. _V ) X. _V ) |
| 10 | 3 9 | sstri | |- { <. <. x , y >. , z >. | ph } C_ ( ( _V X. _V ) X. _V ) |