This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by David Abernethy, 23-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprab2co.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝑅 ) | |
| oprab2co.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝑆 ) | ||
| oprab2co.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 𝐶 , 𝐷 〉 ) | ||
| oprab2co.4 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝐶 𝑀 𝐷 ) ) | ||
| Assertion | oprab2co | ⊢ ( 𝑀 Fn ( 𝑅 × 𝑆 ) → 𝐺 = ( 𝑀 ∘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprab2co.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝑅 ) | |
| 2 | oprab2co.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝑆 ) | |
| 3 | oprab2co.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 𝐶 , 𝐷 〉 ) | |
| 4 | oprab2co.4 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝐶 𝑀 𝐷 ) ) | |
| 5 | 1 2 | opelxpd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑅 × 𝑆 ) ) |
| 6 | df-ov | ⊢ ( 𝐶 𝑀 𝐷 ) = ( 𝑀 ‘ 〈 𝐶 , 𝐷 〉 ) | |
| 7 | 6 | a1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐶 𝑀 𝐷 ) = ( 𝑀 ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 8 | 7 | mpoeq3ia | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝐶 𝑀 𝐷 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑀 ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 9 | 4 8 | eqtri | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑀 ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 10 | 5 3 9 | oprabco | ⊢ ( 𝑀 Fn ( 𝑅 × 𝑆 ) → 𝐺 = ( 𝑀 ∘ 𝐹 ) ) |