This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfval3.g | |- ( ph -> F = <. G , K >. ) |
|
| oppfval3.f | |- ( ph -> F e. ( C Func D ) ) |
||
| Assertion | oppfval3 | |- ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfval3.g | |- ( ph -> F = <. G , K >. ) |
|
| 2 | oppfval3.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 3 | 1 | fveq2d | |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. G , K >. ) ) |
| 4 | df-ov | |- ( G oppFunc K ) = ( oppFunc ` <. G , K >. ) |
|
| 5 | 3 4 | eqtr4di | |- ( ph -> ( oppFunc ` F ) = ( G oppFunc K ) ) |
| 6 | 1 2 | eqeltrrd | |- ( ph -> <. G , K >. e. ( C Func D ) ) |
| 7 | df-br | |- ( G ( C Func D ) K <-> <. G , K >. e. ( C Func D ) ) |
|
| 8 | 6 7 | sylibr | |- ( ph -> G ( C Func D ) K ) |
| 9 | oppfval | |- ( G ( C Func D ) K -> ( G oppFunc K ) = <. G , tpos K >. ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( G oppFunc K ) = <. G , tpos K >. ) |
| 11 | 5 10 | eqtrd | |- ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) |