This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoc1.z | |- .0. = ( 0. ` K ) |
|
| opoc1.u | |- .1. = ( 1. ` K ) |
||
| opoc1.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | opoc0 | |- ( K e. OP -> ( ._|_ ` .0. ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | |- .0. = ( 0. ` K ) |
|
| 2 | opoc1.u | |- .1. = ( 1. ` K ) |
|
| 3 | opoc1.o | |- ._|_ = ( oc ` K ) |
|
| 4 | 1 2 3 | opoc1 | |- ( K e. OP -> ( ._|_ ` .1. ) = .0. ) |
| 5 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 6 | 5 2 | op1cl | |- ( K e. OP -> .1. e. ( Base ` K ) ) |
| 7 | 5 1 | op0cl | |- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 8 | 5 3 | opcon1b | |- ( ( K e. OP /\ .1. e. ( Base ` K ) /\ .0. e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) = .0. <-> ( ._|_ ` .0. ) = .1. ) ) |
| 9 | 6 7 8 | mpd3an23 | |- ( K e. OP -> ( ( ._|_ ` .1. ) = .0. <-> ( ._|_ ` .0. ) = .1. ) ) |
| 10 | 4 9 | mpbid | |- ( K e. OP -> ( ._|_ ` .0. ) = .1. ) |