This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopabg uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabgf.x | |- F/ x ps |
|
| opelopabgf.y | |- F/ y ch |
||
| opelopabgf.1 | |- ( x = A -> ( ph <-> ps ) ) |
||
| opelopabgf.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | opelopabgf | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabgf.x | |- F/ x ps |
|
| 2 | opelopabgf.y | |- F/ y ch |
|
| 3 | opelopabgf.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | opelopabgf.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 5 | opelopabsb | |- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |
|
| 6 | nfcv | |- F/_ x B |
|
| 7 | 6 1 | nfsbcw | |- F/ x [. B / y ]. ps |
| 8 | 3 | sbcbidv | |- ( x = A -> ( [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 9 | 7 8 | sbciegf | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 10 | 2 4 | sbciegf | |- ( B e. W -> ( [. B / y ]. ps <-> ch ) ) |
| 11 | 9 10 | sylan9bb | |- ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ch ) ) |
| 12 | 5 11 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |