This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopabg uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabgf.x | ⊢ Ⅎ 𝑥 𝜓 | |
| opelopabgf.y | ⊢ Ⅎ 𝑦 𝜒 | ||
| opelopabgf.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| opelopabgf.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | opelopabgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabgf.x | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | opelopabgf.y | ⊢ Ⅎ 𝑦 𝜒 | |
| 3 | opelopabgf.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | opelopabgf.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | opelopabsb | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 7 | 6 1 | nfsbcw | ⊢ Ⅎ 𝑥 [ 𝐵 / 𝑦 ] 𝜓 |
| 8 | 3 | sbcbidv | ⊢ ( 𝑥 = 𝐴 → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
| 9 | 7 8 | sbciegf | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
| 10 | 2 4 | sbciegf | ⊢ ( 𝐵 ∈ 𝑊 → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 11 | 9 10 | sylan9bb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜒 ) ) |
| 12 | 5 11 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |