This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non . (Contributed by NM, 1-Jun-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onxpdisj | |- ( On i^i ( _V X. _V ) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj | |- ( ( On i^i ( _V X. _V ) ) = (/) <-> A. x e. On -. x e. ( _V X. _V ) ) |
|
| 2 | on0eqel | |- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
|
| 3 | 0nelxp | |- -. (/) e. ( _V X. _V ) |
|
| 4 | eleq1 | |- ( x = (/) -> ( x e. ( _V X. _V ) <-> (/) e. ( _V X. _V ) ) ) |
|
| 5 | 3 4 | mtbiri | |- ( x = (/) -> -. x e. ( _V X. _V ) ) |
| 6 | 0nelelxp | |- ( x e. ( _V X. _V ) -> -. (/) e. x ) |
|
| 7 | 6 | con2i | |- ( (/) e. x -> -. x e. ( _V X. _V ) ) |
| 8 | 5 7 | jaoi | |- ( ( x = (/) \/ (/) e. x ) -> -. x e. ( _V X. _V ) ) |
| 9 | 2 8 | syl | |- ( x e. On -> -. x e. ( _V X. _V ) ) |
| 10 | 1 9 | mprgbir | |- ( On i^i ( _V X. _V ) ) = (/) |