This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offveq.1 | |- ( ph -> A e. V ) |
|
| offveq.2 | |- ( ph -> F Fn A ) |
||
| offveq.3 | |- ( ph -> G Fn A ) |
||
| offveq.4 | |- ( ph -> H Fn A ) |
||
| offveq.5 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
||
| offveq.6 | |- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
||
| Assertion | offveqb | |- ( ph -> ( H = ( F oF R G ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offveq.1 | |- ( ph -> A e. V ) |
|
| 2 | offveq.2 | |- ( ph -> F Fn A ) |
|
| 3 | offveq.3 | |- ( ph -> G Fn A ) |
|
| 4 | offveq.4 | |- ( ph -> H Fn A ) |
|
| 5 | offveq.5 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
|
| 6 | offveq.6 | |- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
|
| 7 | dffn5 | |- ( H Fn A <-> H = ( x e. A |-> ( H ` x ) ) ) |
|
| 8 | 4 7 | sylib | |- ( ph -> H = ( x e. A |-> ( H ` x ) ) ) |
| 9 | inidm | |- ( A i^i A ) = A |
|
| 10 | 2 3 1 1 9 5 6 | offval | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |
| 11 | 8 10 | eqeq12d | |- ( ph -> ( H = ( F oF R G ) <-> ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) ) ) |
| 12 | fvexd | |- ( ph -> ( H ` x ) e. _V ) |
|
| 13 | 12 | ralrimivw | |- ( ph -> A. x e. A ( H ` x ) e. _V ) |
| 14 | mpteqb | |- ( A. x e. A ( H ` x ) e. _V -> ( ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |
| 16 | 11 15 | bitrd | |- ( ph -> ( H = ( F oF R G ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |