This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normsub0 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` ( A -h B ) ) = 0 <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 2 | 1 | eqeq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) = 0 <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 ) ) |
| 3 | eqeq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A = B <-> if ( A e. ~H , A , 0h ) = B ) ) |
|
| 4 | 2 3 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h B ) ) = 0 <-> A = B ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> if ( A e. ~H , A , 0h ) = B ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveqeq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 ) ) |
| 7 | eqeq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) = B <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 6 7 | bibi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = 0 <-> if ( A e. ~H , A , 0h ) = B ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 10 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 11 | 9 10 | normsub0i | |- ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = 0 <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) |
| 12 | 4 8 11 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` ( A -h B ) ) = 0 <-> A = B ) ) |