This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiply an element of _om by 1o . (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnm1 | |- ( A e. _om -> ( A .o 1o ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | |- 1o = suc (/) |
|
| 2 | 1 | oveq2i | |- ( A .o 1o ) = ( A .o suc (/) ) |
| 3 | peano1 | |- (/) e. _om |
|
| 4 | nnmsuc | |- ( ( A e. _om /\ (/) e. _om ) -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. _om -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) |
| 6 | nnm0 | |- ( A e. _om -> ( A .o (/) ) = (/) ) |
|
| 7 | 6 | oveq1d | |- ( A e. _om -> ( ( A .o (/) ) +o A ) = ( (/) +o A ) ) |
| 8 | nna0r | |- ( A e. _om -> ( (/) +o A ) = A ) |
|
| 9 | 5 7 8 | 3eqtrd | |- ( A e. _om -> ( A .o suc (/) ) = A ) |
| 10 | 2 9 | eqtrid | |- ( A e. _om -> ( A .o 1o ) = A ) |