This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020) (Proof shortened by Thierry Arnoux, 6-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0sqeq1 | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> N = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( N ^ 2 ) = 1 ) |
|
| 2 | 1 | fveq2d | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = ( sqrt ` 1 ) ) |
| 3 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 4 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 5 | sqrtsq | |- ( ( N e. RR /\ 0 <_ N ) -> ( sqrt ` ( N ^ 2 ) ) = N ) |
|
| 6 | 3 4 5 | syl2anc | |- ( N e. NN0 -> ( sqrt ` ( N ^ 2 ) ) = N ) |
| 7 | 6 | adantr | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` ( N ^ 2 ) ) = N ) |
| 8 | sqrt1 | |- ( sqrt ` 1 ) = 1 |
|
| 9 | 8 | a1i | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> ( sqrt ` 1 ) = 1 ) |
| 10 | 2 7 9 | 3eqtr3d | |- ( ( N e. NN0 /\ ( N ^ 2 ) = 1 ) -> N = 1 ) |