This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. This version of neq0 requires only that x not be free in, rather than not occur in, A . (Contributed by BJ, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0f.1 | |- F/_ x A |
|
| Assertion | neq0f | |- ( -. A = (/) <-> E. x x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0f.1 | |- F/_ x A |
|
| 2 | 1 | eq0f | |- ( A = (/) <-> A. x -. x e. A ) |
| 3 | 2 | notbii | |- ( -. A = (/) <-> -. A. x -. x e. A ) |
| 4 | df-ex | |- ( E. x x e. A <-> -. A. x -. x e. A ) |
|
| 5 | 3 4 | bitr4i | |- ( -. A = (/) <-> E. x x e. A ) |