This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. This version of neq0 requires only that x not be free in, rather than not occur in, A . (Contributed by BJ, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | neq0f | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | 1 | eq0f | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 3 | 2 | notbii | ⊢ ( ¬ 𝐴 = ∅ ↔ ¬ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 4 | df-ex | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |