This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | |- V = ( Vtx ` G ) |
|
| nbuhgr.e | |- E = ( Edg ` G ) |
||
| Assertion | nbumgr | |- ( G e. UMGraph -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | |- V = ( Vtx ` G ) |
|
| 2 | nbuhgr.e | |- E = ( Edg ` G ) |
|
| 3 | 1 2 | nbumgrvtx | |- ( ( G e. UMGraph /\ N e. V ) -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) |
| 4 | 3 | expcom | |- ( N e. V -> ( G e. UMGraph -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) ) |
| 5 | df-nel | |- ( N e/ V <-> -. N e. V ) |
|
| 6 | 1 | nbgrnvtx0 | |- ( N e/ V -> ( G NeighbVtx N ) = (/) ) |
| 7 | 5 6 | sylbir | |- ( -. N e. V -> ( G NeighbVtx N ) = (/) ) |
| 8 | 7 | adantr | |- ( ( -. N e. V /\ G e. UMGraph ) -> ( G NeighbVtx N ) = (/) ) |
| 9 | 1 2 | umgrpredgv | |- ( ( G e. UMGraph /\ { N , n } e. E ) -> ( N e. V /\ n e. V ) ) |
| 10 | 9 | simpld | |- ( ( G e. UMGraph /\ { N , n } e. E ) -> N e. V ) |
| 11 | 10 | ex | |- ( G e. UMGraph -> ( { N , n } e. E -> N e. V ) ) |
| 12 | 11 | adantl | |- ( ( n e. V /\ G e. UMGraph ) -> ( { N , n } e. E -> N e. V ) ) |
| 13 | 12 | con3d | |- ( ( n e. V /\ G e. UMGraph ) -> ( -. N e. V -> -. { N , n } e. E ) ) |
| 14 | 13 | ex | |- ( n e. V -> ( G e. UMGraph -> ( -. N e. V -> -. { N , n } e. E ) ) ) |
| 15 | 14 | com13 | |- ( -. N e. V -> ( G e. UMGraph -> ( n e. V -> -. { N , n } e. E ) ) ) |
| 16 | 15 | imp | |- ( ( -. N e. V /\ G e. UMGraph ) -> ( n e. V -> -. { N , n } e. E ) ) |
| 17 | 16 | ralrimiv | |- ( ( -. N e. V /\ G e. UMGraph ) -> A. n e. V -. { N , n } e. E ) |
| 18 | rabeq0 | |- ( { n e. V | { N , n } e. E } = (/) <-> A. n e. V -. { N , n } e. E ) |
|
| 19 | 17 18 | sylibr | |- ( ( -. N e. V /\ G e. UMGraph ) -> { n e. V | { N , n } e. E } = (/) ) |
| 20 | 8 19 | eqtr4d | |- ( ( -. N e. V /\ G e. UMGraph ) -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) |
| 21 | 20 | ex | |- ( -. N e. V -> ( G e. UMGraph -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) ) |
| 22 | 4 21 | pm2.61i | |- ( G e. UMGraph -> ( G NeighbVtx N ) = { n e. V | { N , n } e. E } ) |