This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of an arbitrary class in a multigraph. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbumgr | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbumgrvtx | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| 4 | 3 | expcom | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
| 5 | df-nel | ⊢ ( 𝑁 ∉ 𝑉 ↔ ¬ 𝑁 ∈ 𝑉 ) | |
| 6 | 1 | nbgrnvtx0 | ⊢ ( 𝑁 ∉ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 7 | 5 6 | sylbir | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 8 | 7 | adantr | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 9 | 1 2 | umgrpredgv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → 𝑁 ∈ 𝑉 ) |
| 11 | 10 | ex | ⊢ ( 𝐺 ∈ UMGraph → ( { 𝑁 , 𝑛 } ∈ 𝐸 → 𝑁 ∈ 𝑉 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( { 𝑁 , 𝑛 } ∈ 𝐸 → 𝑁 ∈ 𝑉 ) ) |
| 13 | 12 | con3d | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( ¬ 𝑁 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 14 | 13 | ex | ⊢ ( 𝑛 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( ¬ 𝑁 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) ) |
| 15 | 14 | com13 | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝑛 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝑛 ∈ 𝑉 → ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 17 | 16 | ralrimiv | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ∀ 𝑛 ∈ 𝑉 ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) |
| 18 | rabeq0 | ⊢ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ∅ ↔ ∀ 𝑛 ∈ 𝑉 ¬ { 𝑁 , 𝑛 } ∈ 𝐸 ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ∅ ) |
| 20 | 8 19 | eqtr4d | ⊢ ( ( ¬ 𝑁 ∈ 𝑉 ∧ 𝐺 ∈ UMGraph ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| 21 | 20 | ex | ⊢ ( ¬ 𝑁 ∈ 𝑉 → ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
| 22 | 4 21 | pm2.61i | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |