This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of rspcev using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcegf.1 | |- F/ x ps |
|
| rspcegf.2 | |- F/_ x A |
||
| rspcegf.3 | |- F/_ x B |
||
| rspcegf.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | rspcegf | |- ( ( A e. B /\ ps ) -> E. x e. B ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcegf.1 | |- F/ x ps |
|
| 2 | rspcegf.2 | |- F/_ x A |
|
| 3 | rspcegf.3 | |- F/_ x B |
|
| 4 | rspcegf.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 5 | 2 3 | nfel | |- F/ x A e. B |
| 6 | 5 1 | nfan | |- F/ x ( A e. B /\ ps ) |
| 7 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 8 | 7 4 | anbi12d | |- ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) |
| 9 | 2 6 8 | spcegf | |- ( A e. B -> ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) ) |
| 10 | 9 | anabsi5 | |- ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) |
| 11 | df-rex | |- ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( A e. B /\ ps ) -> E. x e. B ph ) |