This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This lemma is used to generate substitution instances of the induction hypothesis in mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlemd.1 | |- ( ph -> X e. J ) |
|
| mreexexlemd.2 | |- ( ph -> F C_ ( X \ H ) ) |
||
| mreexexlemd.3 | |- ( ph -> G C_ ( X \ H ) ) |
||
| mreexexlemd.4 | |- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
||
| mreexexlemd.5 | |- ( ph -> ( F u. H ) e. I ) |
||
| mreexexlemd.6 | |- ( ph -> ( F ~~ K \/ G ~~ K ) ) |
||
| mreexexlemd.7 | |- ( ph -> A. t A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) ) |
||
| Assertion | mreexexlemd | |- ( ph -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlemd.1 | |- ( ph -> X e. J ) |
|
| 2 | mreexexlemd.2 | |- ( ph -> F C_ ( X \ H ) ) |
|
| 3 | mreexexlemd.3 | |- ( ph -> G C_ ( X \ H ) ) |
|
| 4 | mreexexlemd.4 | |- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
|
| 5 | mreexexlemd.5 | |- ( ph -> ( F u. H ) e. I ) |
|
| 6 | mreexexlemd.6 | |- ( ph -> ( F ~~ K \/ G ~~ K ) ) |
|
| 7 | mreexexlemd.7 | |- ( ph -> A. t A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) ) |
|
| 8 | simplr | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> u = f ) |
|
| 9 | 8 | breq1d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u ~~ K <-> f ~~ K ) ) |
| 10 | simpr | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> v = g ) |
|
| 11 | 10 | breq1d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( v ~~ K <-> g ~~ K ) ) |
| 12 | 9 11 | orbi12d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( u ~~ K \/ v ~~ K ) <-> ( f ~~ K \/ g ~~ K ) ) ) |
| 13 | simpll | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> t = h ) |
|
| 14 | 10 13 | uneq12d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( v u. t ) = ( g u. h ) ) |
| 15 | 14 | fveq2d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( N ` ( v u. t ) ) = ( N ` ( g u. h ) ) ) |
| 16 | 8 15 | sseq12d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u C_ ( N ` ( v u. t ) ) <-> f C_ ( N ` ( g u. h ) ) ) ) |
| 17 | 8 13 | uneq12d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u u. t ) = ( f u. h ) ) |
| 18 | 17 | eleq1d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( u u. t ) e. I <-> ( f u. h ) e. I ) ) |
| 19 | 12 16 18 | 3anbi123d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) <-> ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) ) ) |
| 20 | simpllr | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> u = f ) |
|
| 21 | simpr | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> i = j ) |
|
| 22 | 20 21 | breq12d | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( u ~~ i <-> f ~~ j ) ) |
| 23 | simplll | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> t = h ) |
|
| 24 | 21 23 | uneq12d | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( i u. t ) = ( j u. h ) ) |
| 25 | 24 | eleq1d | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( ( i u. t ) e. I <-> ( j u. h ) e. I ) ) |
| 26 | 22 25 | anbi12d | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( ( u ~~ i /\ ( i u. t ) e. I ) <-> ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
| 27 | simplr | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> v = g ) |
|
| 28 | 27 | pweqd | |- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ~P v = ~P g ) |
| 29 | 26 28 | cbvrexdva2 | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) <-> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
| 30 | 19 29 | imbi12d | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
| 31 | simpl | |- ( ( t = h /\ u = f ) -> t = h ) |
|
| 32 | 31 | difeq2d | |- ( ( t = h /\ u = f ) -> ( X \ t ) = ( X \ h ) ) |
| 33 | 32 | pweqd | |- ( ( t = h /\ u = f ) -> ~P ( X \ t ) = ~P ( X \ h ) ) |
| 34 | 33 | adantr | |- ( ( ( t = h /\ u = f ) /\ v = g ) -> ~P ( X \ t ) = ~P ( X \ h ) ) |
| 35 | 30 34 | cbvraldva2 | |- ( ( t = h /\ u = f ) -> ( A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
| 36 | 35 33 | cbvraldva2 | |- ( t = h -> ( A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
| 37 | 36 | cbvalvw | |- ( A. t A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
| 38 | 7 37 | sylib | |- ( ph -> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
| 39 | ssun2 | |- H C_ ( F u. H ) |
|
| 40 | 39 | a1i | |- ( ph -> H C_ ( F u. H ) ) |
| 41 | 5 40 | ssexd | |- ( ph -> H e. _V ) |
| 42 | 1 | difexd | |- ( ph -> ( X \ H ) e. _V ) |
| 43 | 42 2 | sselpwd | |- ( ph -> F e. ~P ( X \ H ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ h = H ) -> F e. ~P ( X \ H ) ) |
| 45 | simpr | |- ( ( ph /\ h = H ) -> h = H ) |
|
| 46 | 45 | difeq2d | |- ( ( ph /\ h = H ) -> ( X \ h ) = ( X \ H ) ) |
| 47 | 46 | pweqd | |- ( ( ph /\ h = H ) -> ~P ( X \ h ) = ~P ( X \ H ) ) |
| 48 | 44 47 | eleqtrrd | |- ( ( ph /\ h = H ) -> F e. ~P ( X \ h ) ) |
| 49 | 42 3 | sselpwd | |- ( ph -> G e. ~P ( X \ H ) ) |
| 50 | 49 | ad2antrr | |- ( ( ( ph /\ h = H ) /\ f = F ) -> G e. ~P ( X \ H ) ) |
| 51 | 47 | adantr | |- ( ( ( ph /\ h = H ) /\ f = F ) -> ~P ( X \ h ) = ~P ( X \ H ) ) |
| 52 | 50 51 | eleqtrrd | |- ( ( ( ph /\ h = H ) /\ f = F ) -> G e. ~P ( X \ h ) ) |
| 53 | simplr | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> f = F ) |
|
| 54 | 53 | breq1d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f ~~ K <-> F ~~ K ) ) |
| 55 | simpr | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> g = G ) |
|
| 56 | 55 | breq1d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( g ~~ K <-> G ~~ K ) ) |
| 57 | 54 56 | orbi12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f ~~ K \/ g ~~ K ) <-> ( F ~~ K \/ G ~~ K ) ) ) |
| 58 | simpllr | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> h = H ) |
|
| 59 | 55 58 | uneq12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( g u. h ) = ( G u. H ) ) |
| 60 | 59 | fveq2d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( N ` ( g u. h ) ) = ( N ` ( G u. H ) ) ) |
| 61 | 53 60 | sseq12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f C_ ( N ` ( g u. h ) ) <-> F C_ ( N ` ( G u. H ) ) ) ) |
| 62 | 53 58 | uneq12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f u. h ) = ( F u. H ) ) |
| 63 | 62 | eleq1d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f u. h ) e. I <-> ( F u. H ) e. I ) ) |
| 64 | 57 61 63 | 3anbi123d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) <-> ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) ) ) |
| 65 | 55 | pweqd | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ~P g = ~P G ) |
| 66 | 53 | breq1d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f ~~ j <-> F ~~ j ) ) |
| 67 | 58 | uneq2d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( j u. h ) = ( j u. H ) ) |
| 68 | 67 | eleq1d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( j u. h ) e. I <-> ( j u. H ) e. I ) ) |
| 69 | 66 68 | anbi12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f ~~ j /\ ( j u. h ) e. I ) <-> ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
| 70 | 65 69 | rexeqbidv | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) <-> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
| 71 | 64 70 | imbi12d | |- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) <-> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
| 72 | 52 71 | rspcdv | |- ( ( ( ph /\ h = H ) /\ f = F ) -> ( A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
| 73 | 48 72 | rspcimdv | |- ( ( ph /\ h = H ) -> ( A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
| 74 | 41 73 | spcimdv | |- ( ph -> ( A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
| 75 | 38 74 | mpd | |- ( ph -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
| 76 | 6 4 5 75 | mp3and | |- ( ph -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) |