This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvraldva2.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| cbvraldva2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
||
| Assertion | cbvraldva2 | |- ( ph -> ( A. x e. A ps <-> A. y e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvraldva2.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| 2 | cbvraldva2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
|
| 3 | simpr | |- ( ( ph /\ x = y ) -> x = y ) |
|
| 4 | 3 2 | eleq12d | |- ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) ) |
| 5 | 4 1 | imbi12d | |- ( ( ph /\ x = y ) -> ( ( x e. A -> ps ) <-> ( y e. B -> ch ) ) ) |
| 6 | 5 | expcom | |- ( x = y -> ( ph -> ( ( x e. A -> ps ) <-> ( y e. B -> ch ) ) ) ) |
| 7 | 6 | pm5.74d | |- ( x = y -> ( ( ph -> ( x e. A -> ps ) ) <-> ( ph -> ( y e. B -> ch ) ) ) ) |
| 8 | 7 | cbvalvw | |- ( A. x ( ph -> ( x e. A -> ps ) ) <-> A. y ( ph -> ( y e. B -> ch ) ) ) |
| 9 | 19.21v | |- ( A. x ( ph -> ( x e. A -> ps ) ) <-> ( ph -> A. x ( x e. A -> ps ) ) ) |
|
| 10 | 19.21v | |- ( A. y ( ph -> ( y e. B -> ch ) ) <-> ( ph -> A. y ( y e. B -> ch ) ) ) |
|
| 11 | 8 9 10 | 3bitr3i | |- ( ( ph -> A. x ( x e. A -> ps ) ) <-> ( ph -> A. y ( y e. B -> ch ) ) ) |
| 12 | 11 | pm5.74ri | |- ( ph -> ( A. x ( x e. A -> ps ) <-> A. y ( y e. B -> ch ) ) ) |
| 13 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 14 | df-ral | |- ( A. y e. B ch <-> A. y ( y e. B -> ch ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( ph -> ( A. x e. A ps <-> A. y e. B ch ) ) |