This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpfsubrg.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| mpff.b | |- B = ( Base ` S ) |
||
| Assertion | mpff | |- ( F e. Q -> F : ( B ^m I ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfsubrg.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| 2 | mpff.b | |- B = ( Base ` S ) |
|
| 3 | 2 | eqcomi | |- ( Base ` S ) = B |
| 4 | 3 | oveq1i | |- ( ( Base ` S ) ^m I ) = ( B ^m I ) |
| 5 | 4 | oveq2i | |- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( B ^m I ) ) |
| 6 | eqid | |- ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
|
| 7 | 1 | mpfrcl | |- ( F e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 8 | 7 | simp2d | |- ( F e. Q -> S e. CRing ) |
| 9 | ovexd | |- ( F e. Q -> ( B ^m I ) e. _V ) |
|
| 10 | 1 | mpfsubrg | |- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 11 | 6 | subrgss | |- ( Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 12 | 7 10 11 | 3syl | |- ( F e. Q -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 13 | id | |- ( F e. Q -> F e. Q ) |
|
| 14 | 12 13 | sseldd | |- ( F e. Q -> F e. ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 15 | 5 2 6 8 9 14 | pwselbas | |- ( F e. Q -> F : ( B ^m I ) --> B ) |