This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpfsubrg.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| mpfaddcl.p | |- .+ = ( +g ` S ) |
||
| Assertion | mpfaddcl | |- ( ( F e. Q /\ G e. Q ) -> ( F oF .+ G ) e. Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfsubrg.q | |- Q = ran ( ( I evalSub S ) ` R ) |
|
| 2 | mpfaddcl.p | |- .+ = ( +g ` S ) |
|
| 3 | eqid | |- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
|
| 4 | eqid | |- ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
|
| 5 | 1 | mpfrcl | |- ( F e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 6 | 5 | adantr | |- ( ( F e. Q /\ G e. Q ) -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
| 7 | 6 | simp2d | |- ( ( F e. Q /\ G e. Q ) -> S e. CRing ) |
| 8 | ovexd | |- ( ( F e. Q /\ G e. Q ) -> ( ( Base ` S ) ^m I ) e. _V ) |
|
| 9 | 1 | mpfsubrg | |- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 10 | 6 9 | syl | |- ( ( F e. Q /\ G e. Q ) -> Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 11 | 4 | subrgss | |- ( Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 12 | 10 11 | syl | |- ( ( F e. Q /\ G e. Q ) -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 13 | simpl | |- ( ( F e. Q /\ G e. Q ) -> F e. Q ) |
|
| 14 | 12 13 | sseldd | |- ( ( F e. Q /\ G e. Q ) -> F e. ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 15 | simpr | |- ( ( F e. Q /\ G e. Q ) -> G e. Q ) |
|
| 16 | 12 15 | sseldd | |- ( ( F e. Q /\ G e. Q ) -> G e. ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 17 | eqid | |- ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
|
| 18 | 3 4 7 8 14 16 2 17 | pwsplusgval | |- ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) G ) = ( F oF .+ G ) ) |
| 19 | 17 | subrgacl | |- ( ( Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) /\ F e. Q /\ G e. Q ) -> ( F ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) G ) e. Q ) |
| 20 | 19 | 3expib | |- ( Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) G ) e. Q ) ) |
| 21 | 10 20 | mpcom | |- ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( S ^s ( ( Base ` S ) ^m I ) ) ) G ) e. Q ) |
| 22 | 18 21 | eqeltrrd | |- ( ( F e. Q /\ G e. Q ) -> ( F oF .+ G ) e. Q ) |