This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning the monomorphisms of the category c . JFM CAT_1 def. 10. (Contributed by FL, 5-Dec-2007) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mon | |- Mono = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmon | |- Mono |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- c |
| 5 | 4 3 | cfv | |- ( Base ` c ) |
| 6 | vb | |- b |
|
| 7 | chom | |- Hom |
|
| 8 | 4 7 | cfv | |- ( Hom ` c ) |
| 9 | vh | |- h |
|
| 10 | vx | |- x |
|
| 11 | 6 | cv | |- b |
| 12 | vy | |- y |
|
| 13 | vf | |- f |
|
| 14 | 10 | cv | |- x |
| 15 | 9 | cv | |- h |
| 16 | 12 | cv | |- y |
| 17 | 14 16 15 | co | |- ( x h y ) |
| 18 | vz | |- z |
|
| 19 | vg | |- g |
|
| 20 | 18 | cv | |- z |
| 21 | 20 14 15 | co | |- ( z h x ) |
| 22 | 13 | cv | |- f |
| 23 | 20 14 | cop | |- <. z , x >. |
| 24 | cco | |- comp |
|
| 25 | 4 24 | cfv | |- ( comp ` c ) |
| 26 | 23 16 25 | co | |- ( <. z , x >. ( comp ` c ) y ) |
| 27 | 19 | cv | |- g |
| 28 | 22 27 26 | co | |- ( f ( <. z , x >. ( comp ` c ) y ) g ) |
| 29 | 19 21 28 | cmpt | |- ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 30 | 29 | ccnv | |- `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 31 | 30 | wfun | |- Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 32 | 31 18 11 | wral | |- A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) |
| 33 | 32 13 17 | crab | |- { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } |
| 34 | 10 12 11 11 33 | cmpo | |- ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 35 | 9 8 34 | csb | |- [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 36 | 6 5 35 | csb | |- [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) |
| 37 | 1 2 36 | cmpt | |- ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |
| 38 | 0 37 | wceq | |- Mono = ( c e. Cat |-> [_ ( Base ` c ) / b ]_ [_ ( Hom ` c ) / h ]_ ( x e. b , y e. b |-> { f e. ( x h y ) | A. z e. b Fun `' ( g e. ( z h x ) |-> ( f ( <. z , x >. ( comp ` c ) y ) g ) ) } ) ) |