This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| Assertion | mndtcval | |- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | sneq | |- ( m = M -> { m } = { M } ) |
|
| 4 | 3 | opeq2d | |- ( m = M -> <. ( Base ` ndx ) , { m } >. = <. ( Base ` ndx ) , { M } >. ) |
| 5 | id | |- ( m = M -> m = M ) |
|
| 6 | fveq2 | |- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
|
| 7 | 5 5 6 | oteq123d | |- ( m = M -> <. m , m , ( Base ` m ) >. = <. M , M , ( Base ` M ) >. ) |
| 8 | 7 | sneqd | |- ( m = M -> { <. m , m , ( Base ` m ) >. } = { <. M , M , ( Base ` M ) >. } ) |
| 9 | 8 | opeq2d | |- ( m = M -> <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. = <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. ) |
| 10 | 5 5 5 | oteq123d | |- ( m = M -> <. m , m , m >. = <. M , M , M >. ) |
| 11 | fveq2 | |- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
|
| 12 | 10 11 | opeq12d | |- ( m = M -> <. <. m , m , m >. , ( +g ` m ) >. = <. <. M , M , M >. , ( +g ` M ) >. ) |
| 13 | 12 | sneqd | |- ( m = M -> { <. <. m , m , m >. , ( +g ` m ) >. } = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 14 | 13 | opeq2d | |- ( m = M -> <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. = <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. ) |
| 15 | 4 9 14 | tpeq123d | |- ( m = M -> { <. ( Base ` ndx ) , { m } >. , <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. , <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. } = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 16 | df-mndtc | |- MndToCat = ( m e. Mnd |-> { <. ( Base ` ndx ) , { m } >. , <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. , <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. } ) |
|
| 17 | tpex | |- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( M e. Mnd -> ( MndToCat ` M ) = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 19 | 2 18 | syl | |- ( ph -> ( MndToCat ` M ) = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 20 | 1 19 | eqtrd | |- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |