This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcl.b | |- B = ( Base ` G ) |
|
| mndcl.p | |- .+ = ( +g ` G ) |
||
| mnd4g.1 | |- ( ph -> G e. Mnd ) |
||
| mnd4g.2 | |- ( ph -> X e. B ) |
||
| mnd4g.3 | |- ( ph -> Y e. B ) |
||
| mnd4g.4 | |- ( ph -> Z e. B ) |
||
| mnd12g.5 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
||
| Assertion | mnd12g | |- ( ph -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcl.b | |- B = ( Base ` G ) |
|
| 2 | mndcl.p | |- .+ = ( +g ` G ) |
|
| 3 | mnd4g.1 | |- ( ph -> G e. Mnd ) |
|
| 4 | mnd4g.2 | |- ( ph -> X e. B ) |
|
| 5 | mnd4g.3 | |- ( ph -> Y e. B ) |
|
| 6 | mnd4g.4 | |- ( ph -> Z e. B ) |
|
| 7 | mnd12g.5 | |- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |
|
| 8 | 7 | oveq1d | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( ( Y .+ X ) .+ Z ) ) |
| 9 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 10 | 3 4 5 6 9 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
| 11 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( Y e. B /\ X e. B /\ Z e. B ) ) -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
| 12 | 3 5 4 6 11 | syl13anc | |- ( ph -> ( ( Y .+ X ) .+ Z ) = ( Y .+ ( X .+ Z ) ) ) |
| 13 | 8 10 12 | 3eqtr3d | |- ( ph -> ( X .+ ( Y .+ Z ) ) = ( Y .+ ( X .+ Z ) ) ) |