This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merco1lem3 | |- ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1lem2 | |- ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) |
|
| 2 | retbwax2 | |- ( ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) |
|
| 3 | merco1lem2 | |- ( ( ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) |
| 5 | 1 4 | ax-mp | |- ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) |
| 6 | merco1lem2 | |- ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) |
|
| 7 | retbwax2 | |- ( ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) |
|
| 8 | merco1lem2 | |- ( ( ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) -> ( ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) |
| 10 | 6 9 | ax-mp | |- ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) |
| 11 | 5 10 | ax-mp | |- ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) |