This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: tbw-ax2 rederived from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retbwax2 | |- ( ph -> ( ps -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1lem1 | |- ( ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) |
|
| 2 | merco1 | |- ( ( ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) |
| 4 | merco1 | |- ( ( ( ( ( ph -> ( ph -> ph ) ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ph -> ph ) ) ) |
|
| 5 | merco1 | |- ( ( ( ( ( ( ph -> ( ph -> ph ) ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ph -> ph ) ) ) -> ( ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ph -> ( ph -> ph ) ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ph -> ( ph -> ph ) ) ) ) |
| 7 | 3 6 | ax-mp | |- ( ph -> ( ph -> ( ph -> ph ) ) ) |
| 8 | merco1lem1 | |- ( ( ( ( ( ps -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) |
|
| 9 | merco1 | |- ( ( ( ( ( ( ps -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) |
| 11 | merco1 | |- ( ( ( ( ( ph -> ( ps -> ph ) ) -> ( ps -> F. ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ps -> ph ) ) ) |
|
| 12 | merco1 | |- ( ( ( ( ( ( ph -> ( ps -> ph ) ) -> ( ps -> F. ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ps -> ph ) ) ) -> ( ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) ) |
| 14 | 10 13 | ax-mp | |- ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) |
| 15 | 7 14 | ax-mp | |- ( ph -> ( ps -> ph ) ) |